

Agile Engineering Design System

初期設計から3次元設計・解析、5軸機械加工 CAM まで、各種ターボ機械開発をシームレスにサポート

ソフトウェア一覧

用途	ソフトウェア		概要	
初期設計	AXIAL	軸流圧縮機/タービン		
	COMPAL	遠心圧縮機	各種ターボ機械 Meanline 設計、 設計点・非設計点性能評価	
	PUMPAL	遠心/軸流ポンプ		
	FANPAL	遠心/軸流ファン		
	RITAL	ラジアルタービン		
詳細設計	AxCent	遠心/斜流/軸流ターボ機械の3次元設計		
解析	Pushbutton CFD	AxCent ターボ機械専用CFD解析		
	pbPost	AxCent上でFINE/Turboを使用したターボ機械専用CFD解析		
	Pushbutton FEA	AxCent ターボ機械専用FEA解析		
	GasTurb	GUI志向のガスタービン サイクル計算		
専門分野	Dyrobes	軸受解析、ロータダイナミクス解析		
	CTAADS	翼面冷却孔を持つ軸流タービンブレードの設計		
最適化	TurboOPT II	Agile Engineering Design Systemと最適化ソフトウェアとの		
		インターフェースおよび内部最適化エンジンによる最適化		
CAM	MAX-PAC	5軸加工用 CAMソフトウェア		

FINE/Agile

Concepts NREC 社と Cadence Design Systems 社とのパートナーシップにより実現したターボ機械設計・解析ソフトウェアパッケージ

対象ターボ機械	初期設計 Meanline Approach	詳細設計 3D Geometric Design	解析 CFD
軸流圧縮機・タービン	AXIAL		
遠心・斜流圧縮機	COMPAL		
ポンプ	PUMPAL	AxCent	pbPost
ファン・ブロワ	FANPAL		
ラジアル・斜流タービン	RITAL		

http://www.dse-corp.co.jp/

株式会社 第一システムエンジニアリング

〒460-0008 愛知県名古屋市中区栄二丁目 1 番 1 号 日土地名古屋ビル 6F TEL: 052-857-1715 FAX: 052-857-1711

Email: sales-CN@dse-corp.co.jp

Agile Engineering Design System

軸流ターボ機械 設計・解析・加工ソフトウェアのご紹介

AXIAL

軸流圧縮機・タービンの初期設計、設計点・非設計点性能評価

Hub-Mean-Tip径の流線での計算結果を基に出入口翼角や半径、 全体の子午面形状を定義

Restaggering・抽気・冷却・partial admission等の解析設定 3次元設計ソフトウェア AxCent へのシームレスなリンク機能

AxCent

遠心/斜流/軸流ターボ機械の3次元設計

ターボ機械 幾何形状コードの機能搭載 Bezier /Spline 翼形状によるフレキシブルな翼型設計も可能 IGES, STEP, IBL および 3 次元点列座標データ出力機能 既存の翼形状(3次元点列座標)読込可能 MAX-PAC (CAM) へのデータ出力

CFD Options

遠心/軸流/斜流ターボ機械の CFD 解析

Pushbutton CFD:

構造格子の自動メッシュ生成機能 追加費用なしで端末コア数分の並列計算が可能 ターボ機械 流体解析に特化したポスト処理

pbPost:

高速・高精度なターボ機械 CFD 統合環境

Concepts NREC 社と Cadence Design Systems社のパートナーシップ による設計・解析ソフトウェアパッケージ FINE / Agile で、AxCent とシームレスに使用可能

遠心/軸流/斜流ターボ機械の FEA 解析

Pushbutton FEA:

AxCent® の形状データ+パラメトリックな形状モデリング Pushbutton CFD®/pbPost™の計算結果に基づく流体負荷の設定が可能(弱連成計算) 3種類の解析モード(静解析/熱解析/モード解析) 汎用構造解析ソフトウェアへのデータ出力

(ANSYS®、Abagus®、COSMOS®、MSC Nastran™など)

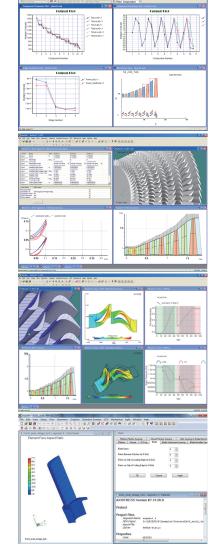
TurboOPT II

Agile Engineering Design System と最適化エンジンとのインターフェイス

市販最適化ソフトウェアとのインターフェイス機能

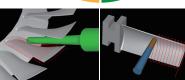
(Isight™, VisualDOC, IOSO, modeFROINTER®, Dakota, optiSLang 他) TurboOPT II™ 最適化ソルバによる最適化計算

Agile Engineering Design System 各ソフトウェア入出力パラメータを基に した設計変数・目的関数の設定が可能


MAX-PAC

ターボ機械部品専用 CAM ソフトウェア

ターボ機械加工用サンプルパスを選択でき新規導入後の操作が容易 パス計算が速く、繰り返し計算に有利


工具ベクトル調整機能のバリエーションが豊富

工具形状に左右されないプログラムが可能(ボール、フラット、ラジアス)

Detailed

各製品の名称はその所有者の商標または登録商標です

